
DESIGN 
QUALITY

PRESENTATION

Thursday 23 June 2011



OBJECTIVES

n  To understand the quality of software systems;

n  To understand how design affects software 
quality;

n  To understand the quality attributes of software 
design.

Thursday 23 June 2011



SOFTWARE QUALITY MODELS

n INTRODUCTION:

n Quality is one of the most elusive concepts that one may have.

n Different people may have different views on what is quality and how to 
measure the quality of a product or service. 

n Even the same people may have different views on quality from time to time. 

n According to the general theory of quality management, the complex and 
multifaceted concept can be described from five different views .

elusive meaning
elusive |iˈloōsiv| (also rare elusory 

|-sərē; -zə-|)
adjective
difficult to find, catch, or achieve 

Thursday 23 June 2011



USER

n From a user's point of view, quality is 'fitness for purpose'. This view of quality 
evaluates the product or service according to whether it meets the user's needs. 

n It, therefore, can be highly personal. 

n The value-based view of quality is concerned with the ability to provide what the 
customer requires at a price that they can afford. 

n Therefore, quality depends on the amount that a customer is willing to pay for it.

Thursday 23 June 2011



PRODUCTION

n From the manufacturing point of view, the quality of a product is the 
conformance to specification. 

n It see quality as whether it is constructed 'right the first time', therefore, the costs 
associated with rework during development and after delivery can be avoided. 

n It focuses on the development and construction process and leads to quality 
assessment that is virtually independent of the product itself.

n As software designers, we take the product view of quality to study what quality 
attributes the software should have.

elusive meaning virtually |ˈvər ch ə(wə)lē|
adverb
nearly; almost :

Thursday 23 June 2011



Hierarchical models

n Quality attributes are 
often classified into a 
hierarchical structure 
t o h i g h l i g h t t h e 
relationship between 
them.

n  For example, McCall  
d i v i d e d s o f t w a r e 
quality attributes into 
3 groups as shown in 
Figure 2.1. 

software quality include   “Boehm's model “ and the “ISO 9126” software quality model
Thursday 23 June 2011



Relational models

Thursday 23 June 2011



Relational models

Thursday 23 June 2011



Relationship model
n Integrity vs. efficiency (inverse): The control of data access will need additional 

code, leading to a longer runtime and more storage requirement.

n Usability vs. efficiency (inverse): Improvement of HCI will need more code and 
data, hence the system will be less efficient.30

n Maintainability and testability vs. efficiency (inverse): Compact and optimised 
code is not easy to maintain and test, and well-commented code is less efficient.

n Flexibility, reusability vs. integrity (inverse): Flexible data structures required 
for flexible and reusable software increase the data security problem.

n Flexibility and reusability vs. maintainability (direct): Maintainable code arises 
from the code that is well structured; meantime, well-structured maintainable 
code is easy to reuse in other programs.

n Portability vs. reusability (direct): Portable code is likely to be easily used in 
other environments. The code is likely well-structured and easier to be reused.

n Correctness vs. efficiency (neutral): The correcmess of code has no relation with 
its efficiency. Correct code may be efficient or inefficient in operation.

Thursday 23 June 2011



Thursday 23 June 2011



Gille’s relationship
n In a study of software quality in six big organizations, 

n Gillies developed six hierarchical quality models, in terms of the criteria used by 
both users and developers of software. 

n Gillies also gave a relational model, illustrated in above diagram. As many as 16 
pairs of quality attributes appeared in his model. 

n His studies demonstrated that the relationships were often not commutative, 
which means although attribute A may reinforce attribute B, attribute B may not 
reinforce attribute A.   i.e.,  a--->b but not b--->a

n Gillies claimed that his relational model was not project dependent.

n They are claimed to be applicable to all software systems. Therefore, they 
ignored the issues related to the specific features and application domains. For 
example, there is no weight associated to the quality attributes to express their 
relative importance. 

Thursday 23 June 2011



n The value of a quality attribute for a given system can also 
change. 

n Therefore, a good design made ten years ago can become less 
satisfactory now and might be regarded as out of date. Such 
phenomena are not unique for software designs. In fact, they 
are more general for all types of designs as stated in Mayall's 
axioms .

n This is equally true for software systems.

n  For example, for the software that controls a nuclear power 
station, safety is perhaps the most important quality attribute, 
while, for a word processor, it is not an issue at all. Moreover, 
the importance of a quality attribute in assessing a particular 
software system may change as time passes.

Thursday 23 June 2011


